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I. INTRODUCTION

Interest in developing exoskeletons for the purposes of
rehabilitation, assistance, or augmentation of human ability has
been rapidly expanding. In recent years the metabolic energy
cost of walking has been reduced significantly utilizing both
passive [1] and powered [2, 3] devices. However, the best
method of controlling these lower limb exoskeletons remains
unclear. Most studies involving exoskeletons are performed
on a treadmill at steady state. While the information gained in
these studies is significant, we must consider how controllers
should behave in non-steady state conditions in order to
make the transition from the laboratory to useful products.
To this end, we propose an experimental comparison of three
ankle exoskeleton control strategies at non-steady state. The
controllers will include proportional EMG control, muscle-
tendon model control, and a time based controller. We will
compare each controller as optimized for individual subjects.
Human-in-the-loop optimization will be performed using a
covariance matrix adaptation evolution strategy (CMA-ES)
with full body metabolic rate as the cost function. We have
found CMA-ES optimization to be effective in optimizing time
based control and it will likely be effective for tuning other
controllers as well.

II. PROPOSED EXPERIMENTAL METHODS

We propose to test three controllers in a four day protocol
on seven individuals at non-steady-state using bilateral ankle
exoskeletons [4]. The first three days will be used to run the
optimization protocol for each of the three controllers. The
fourth day will include validation trials for all three of the
optimized controls, normal walking, and zero-torque mode.
The treadmill speed will be varied as a sinusoid with average
velocity of 1.25 m∗ sec−1, an amplitude of 0.5 m∗ sec−1 and
a period of 60 seconds for all tests.

The time based controller will apply torque as a function
of time since heel strike. The parameterization of the control
law will include rise time, tr, peak time tp, fall time t f , and
peak torque τp.

For EMG control we will apply torque as a function of
gain, K, and processed EMG signals from the medial and
lateral aspects of the soleus muscle, Asm and Asl respectively.
A delay, td , will be applied to the processed EMG signal.
Lastly, any EMG signal below a threshold cut-off, h, will be
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set to zero to eliminate background noise. The parameters to
be optimized for this controller will be K, td , h, and low-pass
filter frequency, fLPF .

τexo = K ∗ [Asl(t − td)+Asm(t − tdelay)] (1)

The musculotendon model will treat the exoskeleton as a
virtual Hill-type muscle with force-length and force-velocity
relationships. Torque will be applied as a function of nor-
malized EMG activity, ankle position and ankle velocity. The
parameters used in the optimization will include tendon slack
length, lts, tendon stiffness, kt , max isometric force, Fmax,
max contraction velocity, vmax, and activation time constant,
τa. Force in the virtual muscle tendon unit, FV MTU , will be
calculated as follows:

FV MTU = Fmax ∗ [A(t)∗ f (l)∗ f (v)+ fp(l)] (2)

Where A is muscle activation estimated through measured
EMG, f (l) is the force-length relationship of the contractile
element, and f (v) is the force-velocity relationship of the
contractile element and fp(l) is the parallel passive elastic
muscle force. FV MTU will be multiplied by a muscle moment
arm, r to calculate the torque applied by the ankle exoskeleton,
τexo.

The CMA-ES settings will include four generations of eight
candidate control laws. Each control law will be applied for
two minutes and the total metabolic energy expended during
the second minute will be calculated using breath-by-breath
respiratory data.

A covariance matrix will be computed after each generation
of eight control laws, which will be used to generate the next
generation. The average of the generation computed from the
covariance matrix of the fourth generation will be used as the
optimized controller in the validation tests.
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